High Temperature Materials

Vinod K. Sikka

Metals and Ceramics Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6083
(865) 574-5112
sikkavk@ornl.gov

Presentation
DOE/IHEA Materials Forum

February 5, 2003

Classification of High Temperature Materials

- Broad Categories of High Temperature Materials
 - Metallics
 - Intermetallics
 - Ceramics/Refractories

Classification of High Temperature Materials (Continued)

- Metallics are Classified in Many Ways
 - Based on major alloying elements
 - Iron base
 - Nickel base
 - Cobalt base
 - Refractory metals (Mo,W, ect.)
 - Based on major scale formation on surface at high temperature in air
 - Chromia formers
 - Aluminum formers
 - Silica formers
 - Based on processing method
 - Polycrystalline
 - Cast
 - Static
 - Investment
 - Centrifugal
 - Directionally solidified
 - Single crystal
 - Wrought
 - Forged
 - Extruded
 - Rolled
 - Powder metallurgy
 - Oxide dispersion strengthened (ODS)

Classification of High Temperature Materials (Continued)

- Intermetallics are Ordered Structures and are Classified Based on Major Alloying Elements
 - Aluminides
 - Ni₃Al
 - NiAI
 - Fe₃Al
 - FeAI
 - Ti₃Al
 - TiAl
 - Silicides
 - Ni₃Si

Classification of High Temperature Materials (Continued)

- Ceramics and Refractories are Classified Based on Major Compound-Forming Element
 - Oxides
 - SiO₂
 - Al₂O₃
 - ZrO2
 - \bullet Cr₂O₃
 - Nitrides
 - Si₃N₄

General Properties of Interest for High Temperature Metallic and Intermetallic Materials Include

- Melting Point
 - This limits the upper use temperature.
- Creep Strength
 - This is the primary deformation mode at high temperatures for steady state loading.
- Fatigue and Thermal Fatigue Resistance
 - Needed for cyclic (mechanical and thermal) loading

General Properties of Interest for High Temperature Metallic and Intermetallic Materials Include (Continued)

- Environmental Resistance
 - Needed for specific applications
 - Oxidation
 - Carburization
 - Sulfidation
 - Molten salts
 - Liquid metals
 - Ease of processing
 - Ease of Fabrication and field repair
 - Cost

Ferritic Steels

- Grade 91 was developed in 1978-1982 (commercialized)
 - It is a Fe-9Cr-1Mo alloy with strengthening from controlled additions of Nb and V
 - ASME Code approved
 - Commercially produced and used in many countries of the world
 - Major applications include
 - Main steam piping
 - Reheater and superheater tubes
 - Headers
 - Pressure vessels
 - Sales
 - Several hundred million dollars

- Ferritic Steels (Continued)
 - Grade 33 (currently under development)
 - It is a Fe-3Cr-3W(V) alloy.
 - It has the combination of high temperature strength and low temperature toughness.
 - Primary benefit of this alloy is the strong potential for NOT REQUIRING POSTWELD HEAT TREATMENT.
 - Major applications include
 - Chemical reactor vessels
 - Headers
 - Steam drums
 - Waterwall boilers
 - Reheater tubes for heat recovery systems
 - Nooter to commercialize the alloy.

0.2% Yield Strength as a Function of Temperature

Creep Rupture Strength of 33VT Alloy is Nearly a Factor of 2 Higher than T23 and the High-Strength Grade T91 of Fe-0Cr-1Mo Steel

Dispersion of Nano-size V-rich MC Needles in Both 3Cr-3WV and 3Cr-3WVTa Alloys are the Likely Mechanism for Their High Strength

Charpy Impact Properties of GTA Weld in Heat 18687 with its Matching Filler Wire

□	40007	GTA Weld
Element	18687	18687
С	0.07	0.052
Mn	0.2	0.2
Р	0.008	0.006
S	0.005	0.005
Si	0.21	0.24
Ni	1.00	1.00
Cr	3.03	3.07
Мо	0.78	0.77
V	0.25	0.25
Cb	0.002	0.003
Ti	0.003	0.003
Co	0.008	0.007
Cu	0.01	0.01
Al	0.004	0.004
В	0.001	0.001
W	1.56	1.54
As	0.001	0.002
Sn	0.002	0.002
Zr	<0.001	<0.001
N	0.001	<0.001
0	0.003	0.002
C (Eq 1)	1.139	1.125

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Ferritic Steels (Continued)
 - Nanophase stabilized ferritic steel (proof-of-concept demonstrated)
 - It is a Fe-12Cr-1Mo alloy stabilized with nanophase particles.
 - It has creep strength that exceeds any of the ferritic steels.
 - Primary benefit of nanophase strengthening makes it suitable for use up to temperatures exceeding 800°C.
 - Major applications include
 - Applications with large mechanical and thermal loading (high thermal fatigue resistance from low thermal expansion and high thermal conductivity and high strength)
 - Need to initiate development project
 - Develop low cost methods for incorporation of nanophase structures
 - Property determination
 - Processing and fabrication methods
 - Pilot scale testing
 - Expand concept to other alloys (austenitics and nickel base)

Long-Term, High Temperature Strength of Dispersion Strengthened Ferritic Alloys

- NCF steel (12YWT)
- Experimentally developed ODS 13.5Cr steel (PNNL, Vista Metal, and U. Idaho)

Microstructure of the As-Processed MA 12YWT Ferritic Alloy

uniformly distributed nanoclusters
- site occupancy on bcc Fe lattice

- average size $r_q = 2.0 (+/- 0.8) \text{ nm}$

10 nm

Cr

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Microstructural Stability Observed in 12YWT Alloy with Short Term Exposure at Very High Temperatures

- Softening is not significant
- ~50% of the microstructure has recrystallized after annealing for 1h at ~86% T_{MP}(~1520°C)

- Austenitic Steels (Continued)
 - H-Series (currently under development)
 - These are cast austenitic steels and commonly known as HP, HT, and HK.
 - Excellent combination of
 - Creep strength
 - High temperature resistance to many environments
 - Easily castable and weldable

- Austenitic Steels (Continued)
 - H-Series (Continued)
 - Major applications include
 - Transfer rolls
 - Radiant burner tubes
 - Heat treating fixtures
 - Ethylene cracking tubes
 - Many others
 - Project objectives
 - Improve upper use temperature
 - Develop strength predicting capability based on composition input
 - Duraloy Technologies to commercialize new compositions

Data for H-Series Steels are being Separated Based on Casting Process and Verified by Tests at ORNL

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Intermetallics
 - Ni₃Al-based alloys developed in 1982-2002 (near commercialization)
 - Ordered alloys strengthened with controlled addition of Mo and B
 - Made castable and weldable by addition of Zr
 - Excellent combination of properties
 - Tensile and creep strength
 - Oxidation resistant
 - Carburization resistant
 - Exo-Melt[™] process developed for its melting
 - Castable by static and centrifugal methods

- Intermetallics (Continued)
 - Ni₃Al-based (Continued)
 - Weldable by MIG process
 - Major applications include
 - Transfer rolls for heat treating furnaces (up to 1000°C)
 - Fixtures for carburizing furnaces
 - Radiant burner tubes
 - Annealing rolls (used as coatings)
 - Producers with experience include
 - Duraloy Technologies
 - Alcon Industries
 - Ultracast
 - Alloy Engineering & Casting
 - United Defense
 - Stoody Company
 - Ametek
 - Deloro Stellite

Nickel Aluminide has the Highest Creep Rupture Strength as Compared to Commercial Alloys

A Major Application of Cast IC-221M is for Heat-Treating Furnace Rolls

General Appearance of Conventional Rolls Inside 160-in. Heat-Treating Furnace at Burns Harbor

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Detail of Blister Formed during Service of Stainless Steel Roll Body

Blisters Must be Removed by Hand Grinding to Prevent Scoring of Plates

First Lot of Fabricated Rolls of Nickel Aluminide for Installation at Bethlehem Steel

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Intermetallics (Continued)
 - FeAI-based alloys developed in 1990-2002 (limited use)
 - Ordered alloy ductilized with controlled additions of Mo, Zr, and B
 - Excellent resistance to
 - Oxidation
 - Carburization and coking
 - Molten salts
 - Castable with limited ductility
 - Processable into sheet through powder metallurgy
 - Useable as coatings or bimetallic

- Intermetallics (Continued)
 - FeAI-based (Continued)
 - Good creep strength up to 800°C
 - Major applications include
 - Microheating elements
 - Hot gas clean-up filters
 - Ethylene tubes as bimetallics
 - Producers with experience include
 - Ametek
 - Duraloy Technologies

Alloy 803 Showed Extensive Coking and Carburization at 1100°C in 120 Hours

HV 7908 Alloy803

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

As polished

Iron Aluminide (Powder Consolidated) Showed Minimal Reaction in Coking Environment at 1100°C in 138 Hours

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Summary

- High Temperature Materials are a Challenge for Improving Efficiency of Many of the Manufacturing Processes.
- Only Limited Effort is Under Way in the U.S. for New Developments of High Temperature Materials.
- ORNL-Developed Grade 91 and Intermetallics have Benefited Some of the Major Applications.
- Exciting Work is Under Way on the Development of Fe-3Cr-3W(v) Steels and the Enhancement of H-Series Stainless Steels.
- Development of Nanophase-Strengthened Materials Offers a New Opportunity for the Next Generation of High Temperature Materials.

